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STEREOSELECTIVE ADDITION OF A NOVEL, ENANTIOMERICALLY PURE
VINYLLITHIUM REAGENT TO PROCHIRAL CARBONYL COMPOUNDS

Hellmut Mahler and Manfred Braun®
Institut fiir Organische Chemie und Makromolekulare Chemie der Uniwversitédt Diisseldorf
Universitdtsstrasse 1, D-4000 Diisseldorf, FRG

Summary: The vinyllithium reagent (S)-3, generated from the alkene § by bromine/lithium ex-

change, reacts stereoselectively with prochiral carbonyl compounds. Debromination of

the adducts 4/8 affords the (Z)-olefins 11/12, which can be cleaved by ozonolysis.
The addition of a~heterosubstituted carbanions (“d1-reagents"1)) to aldehydes or prochiral
ketones has become an important stereogenic reaction for forming carbon—carbon bondsz) . En-
antiamerically pure acyloins 2a, a-hydroxy carboxylic acids 2b as well as vicinal diols 2¢
should be available by using chiral equivalents of aldehyde-, formic acid-, and rrethaml—d1—
synthons la—¢. The nucleophilic reagents, developed so far for this purpose3) , are either
plagued by tedious preparation’® and moderate diastereoselectivity’P or applicable to a
special problem only4C) . In this cammunication, we report on the generation of the enantio-
merically pure vinyllithium reagent 3, its highly diastereoselective addition to prochiral
carbonyl campounds, and on the oxidative cleavage of the double bond.
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Lactic acid, a comrercial product available in both enantiomeric forms, is chosen as chiral
auxiliary material. Thus, (S)-ethyl lactate is protected as MFM—etherS) and reduced to the
aldehyde 5% . Chain extension with carbon tetrabromide’) affords the alkene § as a colorless

liquid in 67-75% overall yield (distilled product).
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Considering the isameric lithium reagents 3 and 7, it is evident, that only the (E)-reagent 3
could open a possibility for stereoselective addition, whereas the isomer 7 will have no chance
to discriminate between the enantiotopic faces of the carbonyl group. Thus, the specific ex-
change of the (Z)-bromine atom in § versus lithium is the "conditio sine qua non". Fortunately,
the desired isamer 3 is formed exclusively, when a slight excess of the dibromide ¢ is used
(n-butyllithium; diethyl ether; 30 min). Obviously, the thermodynamically favoured reagent 3
is generated by an exchange reaction between the lithiated species 7 and the dibramide 28'97.
The addition of the intermediate 3 to benzaldehyde was performed in several solvent systems.
The diasterecmeric adducts 4a and gg, whose ratios are shown in table 1, differ significantly
in their 'B- and |C-NMR-spectra. Tetrahydrofuran (THF) or mixtures of THF and diethyl ether
proved to be most suitable, resulting in diasterecmer ratios higher than 98:2.

Table 1: Addition of 3 to Benzaldehyde in Different Solvents

Solvent Temperature 4a : Ba

Isopentane -115°C 63 : 37

Et,0 -105°C 89 : 1

THF/1sopentane -120°C 98 :

THF ~-100°C >98 :

THF/Et, 0 -105°C >98 :
10)

Under optimized conditions ~— , the addition of the vinyllithium reagent 3 to aliphatic alde-
hydes and to acetophenone was performed. In these cases too, satisfactory diastereoselectivity
is obtained (see table 2) m . The pure diastereomers 4a-d can be isolated by preparative thin-

layer or column chromatography.

Table 2: Addition of 3 to Several Carbonyl Campounds in THF/Et,0 at -105°C

Carbonyl Diasterecmers 4/8 Yielda) Ratio of Diastereomers
Compound 48 4:8
PhCHO a: R'=Ph, R*=H 93% >98 : 2
{H3C) 2CHCHO b: R'=CH(CH;) 2, R’=H 82% 94 : 6
CH3CHO ¢: R'=CHs;, R*=H 84% 91t : 9
PhCOCH3 d: R'=Ph, R®=CHj 93% >98 : 2

a) The crude products contain 3-5% of the dibromide 6.

By another bromine/lithium exchange reaction, the crude mixture gg/gg is transformed into the

other hand, treatment of the vinyllithium reagents S:)/ 10 with dimethyl disulfide affords the vi-
nyl thiocethers 13/14 (43-67%). Since the configuration of the isomers ]3a-¢ has been prove1’112)

the major products in the addition of 3 have evidently the structures gg—gB) . The (S)-reagent 3
attacks the prochiral carbonyl group predominantly from the Re-side.

I3

The cleavage of the double bond in the debrominated olefins 11=/ 12 delivers the desired products
2a-¢ with oxygen functionality in 1,2 distance. For example, ozonolysis of the crude mixture
11a/12a and subsequent reduction (NaBH 4) afford the diol 15 in 95% optical puritym) besides of
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15)

of the chiral auxiliary reagent 16 ™, which can be removed by distillation or by chromatography.

The use of the (Z)-alkenes ]1 as chiral building blocks will be investigated; the reaction of the
vinyllithium reagent 9 with other electrophiles should enhance the versatility.
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10) Typical procedure: To a mixture of 2.63g 6 (8.27 mmol) and 80ml Et,0, which is stirred at
~105°C under N,, 4.9ml (7.84 mmol) of 1.6 M solution of n-butyllithium in hexane are added
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After addition of 10ml saturated aqueous NH4C1, the usual isolation affords 2.62g (92%)
crude 4a/8az (98:2).

11) All new compounds gave correct C,H analyses. — Same characteristic physical and spectro-—
scopic data:

|a|é5 = -62.5° (c=1.35; 95% ag. EtOH). - b.p. 52-53°C/0.001Torr. - THMR (300MHz; 6;

CDC1y): 1.28 (d, J=6.6Hz), 6.42 (d, J=8.0Hz). - ' *C-NMR: 19.72, 59.02, 67.04, 71.69,
72.84, 90.36, 93.52, 140.30.

4a: ]a]é" = - 193.4° (c=2.2; 95% ag. EtOH). - b.p. 132-136°C/0.001Torr.- THem: 1.30 4,
J=6.6Hz) , 5.66 (s), 6.03 (d, J=9Hz) . - 'SC-NMR: 21.31, 58.93, 66.82, 69.19, 71.57, 73.45,
92.97, 126.22, 127.78, 128.24, 130.60, 136.25, 140.44.

12) For 13a: see lit. 4c); for 13b by transformation into (S)-3-hydroxy-2-methylheptanone-4
according to lit. 4c); for 13¢ by hydrogenation and deprotection to (S,8)-2, 5-hexanediol.

13} The configuration of 4d was determined by transformation of 11d into (S)-2-phenyl-1,2-pro-
panediol according to the procedure described for 1la.

14) 82% yield. - |a|2® = +39.3° (c=2; 95% ag. EtOH); |a|2® = -41.2° according to R. L
Elsenbaumer, H. S. Mosher, J. Org. Chem. 44 (1979) 600 for (R)-15.
15) 91% yield. - [u[és = +11.6°; a sample prepared from (S)-ethyl lactate shows +11.7° (95%EtOH) .
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